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Abstract
In recent years it has become evident that many biological functions and
processes are associated with the adoption by cellular membranes of complex
geometries, at least locally. In this paper, we initially discuss the range of self-
assembled structures that lipids, the building blocks of biological membranes,
may form, focusing specifically on the inverse lyotropic phases of negative
interfacial mean curvature. We describe the roles of curvature elasticity and
packing frustration in controlling the stability of these inverse phases, and
the experimental determination of the spontaneous curvature and the curvature
elastic parameters. We discuss how the lyotropic phase behaviour can be tuned
by the addition of compounds such as long-chain alkanes, which can relieve
packing frustration. The latter section of the paper elaborates further on the
structure, geometric properties, and stability of the inverse bicontinuous cubic
phases.

1. Introduction

In this paper we review previous work from our research group on those lyotropic liquid-
crystalline phases of lipids that exhibit inverse interfacial curvature. The most common and best
characterized of these are the inverse bicontinuous cubic phases Ia3d , Pn3m and Im3m [1–4],
the inverse hexagonal HII phase [5, 6], and the inverse micellar cubic Fd3m phase [7]. We will
describe the development of our understanding of the role of curvature elastic energy, along
with packing constraints, in stabilizing these inverse phases [8–14]. We will not deal with the
kinetics or the mechanisms of transitions between inverse phases, as we have recently covered
these topics elsewhere [15–17].

The human body contains of the order of 1013 cells, each of which is spatially defined by
a complex network of membranes that encapsulate and serve to compartmentalize numerous
biological structures such as the cell itself, the endoplasmic reticulum, the Golgi apparatus,
the mitochondria and the nucleus. It is well documented that the fluid bilayer structure of all
biological membranes basically arises from the self-assembly properties of amphiphilic lipids
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Figure 1. Schematic sketches of the most common inverse phases lying between the flat fluid
lamellar Lα phase and the inverse micellar solution L2, in order of increasingly negative interfacial
mean curvature from left to right: inverse bicontinuous cubic (spacegroups Pn3m, Im3m, Ia3d),
inverse hexagonal HII, and inverse micellar cubic (spacegroup Fd3m).

in aqueous solution, driven by the hydrophobic effect. Embedded within or attached to the fluid
bilayer is a diverse range of membrane proteins (e.g. receptors, ion channels, etc) that carry
out a wide range of functional roles. This fluid mosaic model has been extended in the last
decade to allow for the formation of membrane microdomains, particularly in the presence of
sterols, sphingolipids, and certain glycoproteins, thought to have vital roles in a diverse range
of functions such as trafficking and cell signalling. However, there are also many situations
where the bilayer structure must be locally and temporarily destabilized, for example, during
membrane fusion [18], and indeed there are many regions within cells where the membrane
is quite highly curved. Biophysicists have been exploring the possible roles of curvature and
lipid polymorphism in biological systems for some years already [19–21], but it is only very
recently that membrane curvature, and its implications for static and dynamic processes in
membrane structure and function, has emerged as a hot area of membrane biology [22–24].
Related to this is the question of bilayer asymmetry in lipid composition [25], since this is one
way of inducing membrane curvature. However, even symmetric lipid bilayers may develop a
tendency for monolayer curvature, depending on the thermodynamic conditions (temperature,
pressure, pH, salt concentration, hydration, osmotic pressure, etc). If the desire for interfacial
curvature towards the aqueous region becomes sufficiently strong, a transition will tend to occur
from the fluid bilayer lamellar phase to an inverse phase, where there is a negative monolayer
interfacial mean curvature. There is a considerable amount of microscopy data which supports
the idea that inverse lipid phases (hexagonal and/or cubic) can occur within certain cells [19].
Inverse lipid phases may also be useful for biotechnological applications [26], such as in cubo
crystallization of membrane proteins [27–29], drug delivery [30], and DNA/lipid complexes
for gene therapy [31, 32].

A range of inverse phases can be formed by lipids when placed in contact with water [33],
and these are illustrated in figure 1. The fluid lamellar phase, Lα , can be visualized as a set of flat
bilayer sheets stacked on top of each other and forms the basic building block of all biological
membranes. In the inverse micellar phase, L2, the hydrophilic headgroups are arranged around
water cores, with the hydrophobic chains extending outwards. The inverse micelles have a
disordered packing, with only local positional correlations and no long-range order. The inverse
hexagonal phase, HII, can be visualized as a set of hexagonally packed cylinders, where water
channels pass through the core of each cylinder. More complex mesophases such as the inverse
bicontinuous cubic phases (QII) [34] may also arise that display three-dimensional periodicity
(non-cubic phases of rhombohedral or tetragonal symmetry have also been observed, although
only rarely). The most common such cubic phases are of crystallographic spacegroups Im3m,
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Figure 2. The principal curvatures at one point on a monolayer, where c1 = 1/R1 and c2 = 1/R2.

Pn3m and Ia3d . In all three cases, water channels weave their way through a single continuous
bilayer that divides space equally into two inter-linked but separate aqueous sub-volumes.
Finally, the discontinuous inverse micellar cubic phase, of spacegroup Fd3m, consists of two
different sizes of quasi-spherical micelles, arranged on a face-centred cubic lattice [35]. The
phases depicted in figure 1 have been arranged according to their average interfacial mean
curvature, a concept that is discussed in greater detail during the course of this review.

1.1. Interfacial curvature

Consider a single flat lipid monolayer. Varying the thermodynamic parameters of this system
will tend to change the shape of the monolayer. For instance, in the absence of any constrictions,
an increase in temperature would lead to the chains of the lipids splaying out away from each
other, and would generate a curved configuration. For any given point on the monolayer, a
normal to the surface can be extended, and the principal curvatures, c1 and c2, can be obtained
as illustrated in figure 2, as the maximum and minimum values of curvature respectively.

The two principal curvatures are perpendicular to each other and, when combined as a sum
or a product, give the mean curvature H or the Gaussian curvature K at that point:

H = 1/2 (c1 + c2)

K = c1c2.
(1)

Conversely, if both the mean and Gaussian curvatures are known as a function of position, the
shape of the surface is determined. A flat surface has zero mean and zero Gaussian curvature;
if rolled into a cylinder or a cone, its mean curvature will change, but its Gaussian curvature
will remain zero. In fact, it is impossible to alter the Gaussian curvature of a surface by bending
alone; some distortion, such as stretching, compression or tearing, must occur. Thus, for
example, a flat surface cannot be wrapped into a spherical shape (which has a positive Gaussian
curvature), without some stretching or creasing occurring. Similarly, it cannot be deformed into
a saddle surface (which has a negative Gaussian curvature) without some distortion.

One source of confusion in treating membrane curvature is the sign of the monolayer mean
curvature. We adopt the convention (figure 3) that positive mean curvature corresponds to the
monolayer bending towards the hydrocarbon chain region and away from the water region, and
negative mean curvature is when the bending is the other way round. Thus the spontaneous
monolayer mean curvature of all inverse curved phases should always be negative (note that
some authors [19] adopt the opposite convention). Positive mean curvature tends to be favoured
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Figure 3. Convention adopted for positive and negative (inverse) mean curvature of a lipid
monolayer, shown on the left and right, respectively.

Figure 4. The three minimal surfaces, D, P, and G (gyroid), which sit at the bilayer mid-plane and
underlie the bicontinuous cubic phases Pn3m, Im3m, and Ia3d.

by cone-shaped amphiphiles (designated as type I), and negative mean curvature by wedge-
shaped amphiphiles (type II).

Saddle surfaces where the principal curvatures are equal in magnitude (and opposite in
sign) have zero mean curvature at all points, and are known as minimal surfaces. Such surfaces
can be extended to fill space periodically, forming infinite periodic minimal surfaces (IPMS).
These porous surfaces have constant (zero) mean curvature at all points, but continuously
varying Gaussian curvature, which is everywhere non-positive, varying between a most
negative value at saddle points and zero at flat points. Such mathematical surfaces were
hypothesized by Scriven in 1976 [36, 37] to describe the underlying physical interfaces
observed in certain ternary microemulsion mixtures of oil, surfactant and water. This concept
has subsequently been shown to be relevant to the geometric description of many self-
assembled phases of amphiphilic molecules, such as the bicontinuous cubic phases, as well as
other self-assembled soft matter such as block copolymers [38]. For the inverse cubic phases
Im3m, Pn3m and Ia3d , the bilayer mid-plane has been shown to sit on the P, D, and G (gyroid)
minimal surfaces respectively (figure 4), leading to the alternative naming as QP

II, QD
II , and QG

II ,
respectively, for these three cubic phases. These three minimal surfaces can be interconverted
by a ‘Bonnet’ transformation [39], a mathematical procedure that performs a one-to-one
mapping between equivalent surface patches on the three surfaces, thereby preserving the
same distribution of Gaussian curvature (and zero mean curvature) at all points. Although
the three minimal surfaces have the same area per unit cell, they fill space to different degrees
of compactness (see section 2.5).
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Figure 5. The ‘shape’ of amphiphiles as determined by their packing parameter S, where the cone
(left) has S < 1, S = 1 for the cylindrical shape (centre) and the inverted cone-shape (right) is
preferred by lipids with S > 1.

1.2. Lipid packing parameters and phase preferences

The lipids that can form these curved inverse phases tend to have certain structural similarities.
Israelachvili et al [40] suggested that the lipids can be usefully categorized by their ‘shape’ or
‘packing parameter’, S, which subsumes the basic geometric parameters, given by:

S = ν

a0lC
(2)

where a0 is the optimum surface area of the headgroup, lC is the maximum length of the
chains, and ν is the molecular volume of the chains. Israelachvili and co-workers showed
that, in a qualitative sense, the shape of the aggregates formed by any lipid in contact
with water was related to its packing parameter (figure 5). A typical example would be
lysophosphatidylcholine, which is a single-chained lipid, where 1/3 < S < 1/2 [41]. A
lipid with this packing parameter would tend to be cone-or wedge-shaped, and it will tend to
form positively curved micellar aggregates. Lyotropic mesophases adopted by such aggregates
are known as type I, or ‘normal’, phases. In this paper we have focused on ‘inverse’, or type
II, lipid phases, which are formed by lipids with S > 1, and which are hence inverted cone-
shaped. Such lipids are typically characterized by having a small headgroup cross-sectional
area relative to that of the chain region (e.g. double-chained species that cause the tail-region
to splay out relative to the headgroup region).

1.3. Lipid membrane energetics

Although the model detailed by Israelachvili and co-workers illustrates very simply why the
flat bilayer membrane may not always be the aggregate shape of choice, it fails to predict the
appearance of the inverse bicontinuous phases, which are prevalent in the phase behaviour
(when measured in isolation) of many phospholipids and glycolipids found in cell membranes.
Because of this, more rigorous approaches have been developed, which consider the total free
energy of the system, consisting of assemblies of lipid and water molecules. Gruner et al [42]
assumed that the free energy would be dominated by four factors: the membrane curvature
elasticity, gC; the packing of the hydrocarbon chains, gP; the hydration force; and lastly the
electrostatic contributions. This model was refined later to include any other interactions,
which were grouped together with the hydration and electrostatic forces into a single free-
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energy interaction term, ginter. This resulted in the total free energy of the system being given
as:

gtot = gC + gP + ginter. (3)

The final term in this expression is usually assumed (or arranged experimentally) to be
negligible, leaving the curvature elasticity and the packing of the hydrocarbon chains as the
chief terms dictating the free energy of the system.

2. Membrane curvature elasticity

The curvature elasticity of lipid membranes had previously been considered by Helfrich [43],
who simplified the problem by reducing the lipid bilayer to an infinitely thin elastic surface,
which could then be treated mathematically. Deformation of the surface would then have an
associated energy cost dependent only on any changes of the curvature of the surface, defined
by its mean curvature, H , and its Gaussian curvature, K . The energy costs per unit area of such
deformations are then given by the bending modulus, κ , and the Gaussian modulus, κG, which
describe the energy required to bend the surface (change its mean curvature) and to change its
Gaussian curvature [43, 44]. The latter quantity only has significance for the area-integrated
energy when there is a change in topology of the membrane (this is a consequence of the Gauss–
Bonnet theorem). These two moduli were combined into the ‘Helfrich ansatz’, which gives the
curvature elastic energy per unit area, gC, for a membrane as:

gC = 2κ(H − H0)
2 + κGK (4)

where H0 is the mean curvature of the surface when totally relaxed (often referred to as the
spontaneous mean curvature). Note that this expression is quadratic in the principal curvatures;
the possibility of extending it to terms in the fourth power of the principal curvatures has also
been considered [45].

The spontaneous mean curvature H0 is determined by the distribution of lateral stresses
that occurs across the actual lipid monolayer. Recollecting the illustration used earlier of
a double-chained phospholipid monolayer, it is clear that the lateral forces acting at the
headgroup region will not equal those at the polar–apolar interface or the tail–tail interactions.
The forces at the interfacial region are dominated by the interfacial tension, resulting from
the hydrophobic effect that acts to minimize contact between water and the hydrophobic chain
region, i.e. the interfacial tension is an attractive force, which tries to pack the amphiphiles
tightly together within a monolayer. Counterbalancing this are the overall repulsive pressures
within the headgroup and chain regions. The repulsive force between the chains is due to
thermally activated trans–gauche conformational changes, and this will therefore increase
with increasing temperature. In contrast, an increase in pressure would favour more trans
conformations, thereby allowing the chains to pack closer together laterally. There are several
contributions, such as electrostatic, steric and hydration interactions, to the repulsive headgroup
pressure (there may also be weaker attractive interactions due to residual headgroup–headgroup
hydrogen-bonding). Figure 6 is a schematic representation of a lateral stress profile, which
shows the lateral stress, t (z), as a function of the distance, z, through an amphiphilic monolayer.

For the monolayer to be at its equilibrium area, the integral of the lateral stress across
the monolayer,

∫
t (z) dz, should be zero. The spontaneous mean curvature is proportional

to the first moment of the lateral stress across the monolayer,
∫

zt (z) dz, and is expected to be
negative for amphiphiles with small polar headgroups [46]. Although for such a monolayer, H0

may be negative, when two identical monolayers are placed back-to-back the spontaneous mean
curvature for the bilayer, H b

0 , must be zero to prevent the formation of otherwise energetically
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Figure 6. A schematic lateral stress profile across a lipid monolayer.

Figure 7. Curvature frustration illustrated for the case of a symmetric bilayer consisting of two
monolayers that have an inherent desire to bend. In order to avoid energetically unfavourable voids,
the two monolayers must lie flat back-to-back, resulting in a stored curvature elastic stress.

costly voids, as illustrated in figure 7. Note, however, that this does not hold true for an
asymmetric bilayer, such as a real cell membrane, where the two halves of the bilayer need
not be in balance, leading to a tendency for the bilayer to curve.

When the desire to form a phase having curved interfaces is not very great, the bilayer
will remain as a flat structure, i.e. in the lamellar phase, albeit slightly thinner than its
conformationally preferred thickness. This stored curvature elastic energy translates into
the bilayer expanding laterally and the headgroup area increasing above its preferred value.
However, this effect can only be tolerated up to a certain point, due to the high energetic cost of
exposing the hydrocarbon chains to water (the hydrophobic effect). Upon further stressing the
layers, a transition to an inverse phase may be induced, where the interface can bend towards the
aqueous region, allowing the headgroup area to decrease and the chains to splay out further. It
has been suggested that certain membrane proteins may release stored curvature elastic stress
locally [47–49] during insertion into the bilayer by allowing the chains to splay more and
forcing the headgroups together, which is energetically favourable.

2.1. Determination of the curvature elasticity of inverse curved phases

Experimentally, it is possible to measure the curvature elasticity of curved inverse phases of
lipids. The simplest parameter to obtain is the spontaneous mean curvature H0. A decision
has to be made as to where to place the surface with respect to which the curvature and the
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elastic parameters will be defined. The simplest is to choose the pivotal surface, defined as
the surface at which there is no change in the molecular cross-sectional area upon bending;
alternatively one can choose the neutral surface, where bending and stretching deformations
are energetically decoupled [50, 51]. For the inverse hexagonal HII phase, the pivotal surface
typically lies just on the hydrocarbon chain side of the polar headgroup region. It was
recognized two decades ago by Gruner and co-workers [52] that the addition of an oil, typically
an alkane, to a lipid–water system that has a propensity to form inverse phases will relieve
the packing frustration energy (see section 3) characteristic of inverse hexagonal phases, by
partitioning into the hydrophobic interstices. Templer et al [14] adopted the approach of
using a long-chain alkane or alkene, such as tricosane or 9-cis-tricosene, in order to minimize
permeation into the lipid chain region. In fact, it was found to be preferable for the added
hydrocarbon to be fluid, i.e. unsaturated, thereby avoiding the added energy costs involved
in melting the alkane. Addition of the hydrocarbon to the lipid, in excess water conditions,
will progressively relieve packing frustration, eventually forming the inverse hexagonal phase,
where characterization of the phase, as well as determination of the lattice parameter, is done
using x-ray diffraction. With further addition of the hydrocarbon, the lipid–water system will
continue to swell, until a limiting point is reached. The ratio of lipid to hydrocarbon at this
limiting point is then kept constant while the water composition, nw, is varied, and the lattice
parameter measured. Since the Gaussian curvature for cylindrical surfaces is zero, the curvature
elasticity is only dependent on the monolayer bending modulus κ . Initially, the system will
swell, but at some water concentration the inverse hexagonal phase will not swell any further
and will reach a constant lattice parameter, the value of RP at the excess water point then
yielding the spontaneous radius of curvature, R0, and hence the spontaneous mean curvature of
the inverse hexagonal phase from the relationship H0 = 1/(2R0).

The osmotic stressing technique can be used to obtain the bending modulus of a curved
inverse hexagonal or bicontinuous cubic phase [53–55]. Here, a lipid sample is placed in
contact with a polymer solution, typically a polyethylene glycol solution, either inside a semi-
permeable membrane or directly into the solution. The osmotic pressure, π , of the polymer
solution dehydrates the lipid mesophase until equilibrium is achieved, and is effectively a
measure of the bending energy of the system, since the monolayer mean curvature changes
in magnitude (become more negative) as the aqueous channels of the phase shrink. Repetition
over a range of osmotic pressures and fitting (for the HII phase) allows the bending modulus κ

to be determined.
Finally, the monolayer Gaussian curvature modulus for a bicontinuous cubic phase can also

be estimated, as illustrated by Templer et al [13], although the results are only valid for studies
on inverse bicontinuous cubic phases that are relatively highly swollen [10]. This ensures that
the assumption that the bending energy of the monolayer is subject only to curvature variations,
introduced in the Helfrich ansatz, holds true. As with the spontaneous mean curvature, the
ratio of the Gaussian (saddle-splay) modulus to the bending modulus, κG/κ , is determined by
measurements of the swelling of the inverse cubic phase. As before, the energy minimum
occurs at the excess water point, and κG/κ can then be ascertained. The associated equations
and their derivations are described by Templer et al [13].

Siegel and Kozlov [56] have recently pioneered an alternative technique to measure this
ratio, which exploits the fact that, at the Lα–QII phase transition, the bilayer Gaussian modulus
is equal to zero. The ratio of the elastic moduli can then be simply expressed (equation (5)) as
a function of the spontaneous mean curvature at the temperature of the transition, TQ, together
with the distance from the bilayer mid-plane to the neutral surface of the monolayer, δ. The
drawback of this method is that it relies on the Lα–QII transition being sharp, which is not
necessarily the case:
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Table 1. The expected signs of the monolayer and bilayer spontaneous curvatures and elastic
moduli for ‘inverse phase-forming’ lipids.

Monolayer Bilayer

H0 −ve 0
κ +ve +ve
κG −ve +ve

κG

κ

∣
∣
∣
TQ

= 2H0(TQ)δ. (5)

2.2. Monolayer versus bilayer curvature elastic parameters

It is important to emphasize that the curvature elastic parameters acquired experimentally, using
the techniques mentioned in the previous section, are all related to the curvature of a monolayer,
rather than a bilayer, for which any variables will be denoted here by a superscript b. The
relationship between the spontaneous mean curvature of a monolayer, H0, and a bilayer, H b

0 ,
has been highlighted previously and, for symmetric bilayers, H b

0 should be zero. In considering
the bilayer bending modulus, κb, the energy required to bend two sheets should be twice that
needed to bend only one sheet. This implies that κb should have a value that is simply twice
that of the monolayer bending modulus, κ . However, a more complex situation exists when
considering the link between the monolayer and bilayer Gaussian moduli, κG and κb

G [57].
The latter is directly related to the monolayer Gaussian modulus, but also includes a term that
contains the bending modulus κ . The explicit expressions for the bilayer curvature parameters
are:

H b
0 = 0

κb = 2κ

κb
G = 2 (κG − 4κ H0l)

(6)

where the bilayer is taken to be symmetric, and l is the monolayer thickness. The bending
modulus κ is positive for both the monolayer and bilayer cases (table 1). However, the situation
is more complicated for the Gaussian modulus κG. The monolayer Gaussian modulus has been
predicted to be negative for systems forming inverse curved phases, and with a magnitude less
than that of the bending modulus κ [13]. This reflects the fact that a uniform monolayer with
a negative H0 would prefer to develop a spherical curvature, i.e. a positive K . However, the
second term in equation (6) for κb

G will tend to make the bilayer Gaussian modulus κb
G positive,

since H0 is negative in this case, and, inserting typical values for κ , H0 and l, the second term
is expected to be larger in magnitude than the first term.

We now consider the magnitude of each of these parameters, to facilitate a more complete
understanding of the nature of curvature elasticity for the curved inverse phases of lipids.
Recently, Zimmerberg and Kozlov [23] published a list of the effective spontaneous curvatures
for a series of lysophospholipids and other lipids, obtained from a range of different sources.
The values range between around −0.05 to −1 nm−1 for the type II lipids given, but a typical
value would be ∼−0.17 nm−1 for dioleoylphosphatidylethanolamine (DOPE) [54]. There has
also been a significant amount of research [58–60] undertaken to elucidate the elastic moduli,
though this has been focused mainly on the bending modulus (table 2). This was not purely
due to the relative ease of determination of the bending modulus, but also because it was often
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Table 2. Typical values of monolayer bending moduli κ for various fluid-phase lipids.

Lipid κ/J κ/kBT Reference

Dioleoylphosphatidylethanolamine (DOPE) 4.5 × 10−20 11 [58]
Dioleoylphosphatidylcholine (DOPC) 3.7 × 10−20 9 [58]
Dilauroylphosphatidylcholine (DLPC) 4.6 × 10−20 11 [59]
Stearoyloleoylphosphatidylcholine (SOPC) 6.4 × 10−20 15.5 [59]
Dimyristoylphosphatidylcholine (DMPC) 6.5 × 10−20 15.8 [60]
1-monoolein (1-MO) 1.2 × 10−20 2.9 [14]

Table 3. Typical values determined for the ratio of the monolayer elastic moduli.

Lipid κG/κ Reference

Monomethyl-dioleoylphosphatidylethanolamine −0.83 [56]
1-MO/DOPC/DOPE −0.75 [13]
2:1 lauric acid/dilauroylphosphatidylcholine −0.70 [63]

(incorrectly!) assumed that the contribution of the Gaussian curvature energy to the free energy
of a lipid system was too small to have any real significance.

The value of bending modulus for 1-monoolein (1-MO) is typical of monoacyl systems,
and is much lower than values for the diacyl phospholipid systems. The fact that it is of the order
of the thermal energy at room temperature, kBT ∼ 4 × 10−21 J, implies that 1-MO may exhibit
considerable thermal bending fluctuations, even when considered as a bilayer. Phospholipid
systems have significantly higher monolayer bending moduli, and so their persistence lengths,
ζ = l exp(2πκ/kBT ) [61] (where l is the dimension of an individual lipid molecule), are
much greater than for the monoacyl systems. Short persistence lengths, such as those for
monoacyl systems or even phospholipid bilayers doped with single-chain amphiphiles, imply
that such lipid membranes will be more prone to rupturing, or micellar budding, than their pure
phospholipid counterparts.

Theoretically, the ratio of the monolayer Gaussian curvature modulus to the bending
modulus was predicted to lie within the range −2 � κG/κ � 0 for the bicontinuous cubic
phases [62]. Templer et al have shown that there is an added restriction from the inference that
compression of hydrocarbon chains will cause increased splay [13], which means that the ratio
of the elastic moduli will lie within smaller bounds, −1 � κG/κ � 0. Experimentally obtained
data (table 3) has been found to agree with this prediction.

2.3. The dependence of the curvature elasticity on temperature and pressure

The curvature elastic parameters are all affected by changes in the temperature or pressure,
as mentioned earlier for the spontaneous mean curvature of a monolayer. Qualitatively, an
increase in temperature will induce a higher degree of chain splay, therefore increasing H0,
whereas an increase in pressure will have the opposite effect. These effects are clearly seen in
the temperature-dependent decrease, and pressure-dependent increase, in lattice parameter for
inverse bicontinuous cubic phases [64, 65]. The latter effect is greatest in the presence of excess
water, which facilitates the swelling of the lattice parameter by partitioning from the bulk into
the cubic phases, in response to the application of hydrostatic pressure.

The monolayer bending modulus κ , and accordingly the bilayer bending modulus κb,
should tend to decrease with increasing temperature, since the lipid layers will tend to
expand laterally and thin transversely with heating [66]. However, apparent exceptions to this
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behaviour have been reported [67]. Similarly, the bending modulus is expected to increase
with hydrostatic pressure, and this is confirmed by recent neutron experiments on amphiphilic
monolayers in a microemulsion system [68].

Much less is known about the effect of temperature and pressure on the Gaussian modulus,
κG. The Gaussian curvature modulus is given by the second moment of the lateral stress profile
t (z) [44, 69]:

κG =
∫ l

0
t (z)(z − ξ)2 dz (7)

where ξ is the distance to the pivotal surfaces from the chain termini. Increasing the temperature
is likely to have repercussions across the whole lateral stress profile, such as increasing the
magnitude of the chain repulsions. The likelihood is that the magnitude of the monolayer
Gaussian curvature modulus will decrease, and vice versa for an increase in pressure. An
even more knotty problem is the effect of temperature or pressure on the bilayer Gaussian
modulus κb

G, as the effects of four variables in equation (6), all of which are dependent on
temperature and pressure, need to be incorporated. The fact that pressure has been shown to
induce intermediate inverse bicontinuous cubic phases in a phospholipid system, which at 1
atm exhibits a direct Lα–HII transition [64], implies that, at least in that case, pressure was
increasing κb

G.

2.4. Relative stabilities of the bicontinuous cubic phases

The curvature energy of the bicontinuous cubic phases, expressed by the Helfrich equation
(equation (4)) has normally been examined with reference to the monolayer thickness being
nearly constant, i.e. the distance from the mid-bilayer minimal surface to the neutral or pivotal
surface, ξ , is kept constant over the whole of the unit cell. For such parallel surfaces, their
mean and Gaussian curvatures H ξ and K ξ , and area element dAξ , are related to the Gaussian
curvature K and the area element dA on the minimal surface by noting that the two principal
curvatures are changed from c1 = −c2 = R−1 on the minimal surface (where R is its radius
of curvature) to cξ

1 = (R + ξ)−1 and cξ

2 = −(R − ξ)−1 on the parallel surface. This leads
directly to the following relations [21]:

H ξ = K ξ

1 + K ξ 2

K ξ = K

1 + K ξ 2

dAξ = dA[1 + K ξ 2].

(8)

These relations show that the geometric properties of the interface are dependent only on the
Gaussian curvature of the underlying minimal surface and the distance ξ of the parallel surface
from the minimal surface. They show that, because K is negative, the mean curvature of the
parallel surface is negative, and its Gaussian curvature is more negative than the underlying
minimal surface. Concomitantly, the area element (area per molecule) is maximal on the
minimal surface and decreases with ξ . Relating this back to the Helfrich equation implies that
the bicontinuous cubic phases should be energetically degenerate when the underlying minimal
surfaces have the same area. The three bicontinuous cubic phases might therefore be expected
to co-exist, a phenomenon that is only very rarely seen (and which might contravene the Gibbs
phase rule). This implies that other interactions break the degeneracy of the QII phases, and
possible explanations for this are discussed later. The experimental phase diagram shown in
figure 8 for the 2:1 lauric acid/dilauroylphosphatidylcholine system shows that the bicontinuous
cubic phases appear with increasing hydration in the order G → D → P, a sequence that
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Figure 8. Experimental phase diagram of the 2:1 lauric acid/dilauroylphosphatidylcholine system,
showing the progressive formation of the three inverse bicontinuous cubic phases Ia3d, Pn3m and
Im3m with increasing water content (from [72]).

appears to be universal, although not all three bicontinuous cubic phases necessarily occur
for a given lyotropic system.

An example of this is frequently given by the 1-monoolein/water system, in which only
the Ia3d and Pn3m phases are seen (albeit in the sequence G → D). Larsson [70] justified
this by examining the geometric constraints of each of the three QII phases. The inherent
shape of the Im3m phase seen in figure 1, which has narrow necks of the lipid bilayer through
which the water channels pass, implies that, at a low water volume fraction, the necks will
close up, as the bilayer itself possesses a certain thickness. This explanation was also applied
to the Pn3m phase, since it also suffers from the same geometric constraint, though to a
lesser degree, allowing it to exist at lower water volume fractions than the Im3m phase.
However, for those water volume fractions at which all of the phases are expected to exist,
experimental results demonstrate that this is not true, and one QII phase dominates. This implies
that the three bicontinuous cubic phases cannot be energetically degenerate, and must have
different curvature elastic energy or packing frustration, or some other interaction. Schwarz
and Gompper [71] have shown that the free-energy density for a phase is dependent on the
‘topological index’ (a mathematical construct that is related to the porosity of a phase) which
in turn can predict the phase sequence seen in figure 8.

Another interesting point to note is that the inverse bicontinuous cubic phases tend to
be more hydrated than the fluid bilayer phase, even though they have an inverse interfacial
curvature. This behaviour is also seen for many other lyotropic systems, and implies that the
additional water is not tuning the preferred curvature of the interface (which would tend to
prevent inverse phase formation), but is rather inertly filling the aqueous ‘chambers’ of the
cubic phases, allowing the already fully hydrated interface to express its existing preferred
negative interfacial curvature.

2.5. Geometric characteristics of the ‘genus-3’ bicontinuous cubic phases

The three inverse bicontinuous cubic phases have, up to this point, been discussed collectively,
and their structures were only briefly touched upon with reference to their space group
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Table 4. Geometric characteristics of the ‘genus-3’ inverse bicontinuous cubic phases.

Minimal surface Cubic phase g χ σ V/VIPMS S/SIPMS a/aPn3m

D Pn3m 2 −2 1.9189 0.5 0.5 1
P Im3m 3 −4 2.3451 1 1 1.279
G Ia3d 5 −8 3.0915 2 2 1.578

symmetry. However, this alone is unable to describe each structure uniquely, since a series of
different morphologies may exist for each space group [73] and must be stated in conjunction
with the topology of each of the three inverse bicontinuous cubic phases. In fact, although
only the ‘genus-3’ D, P and G minimal surface cubic phases have ever been observed for
lipid/water systems, there is a range of other cubic minimal surfaces that exist [74]. Schwarz
and Gompper [71] modelled the distribution of the Gaussian curvature over a minimal surface
for seven possible inverse bicontinuous cubic structures. The three inverse bicontinuous cubic
phases were shown to have smaller widths for their respective Gaussian curvature distributions
(which is the same for the D, P and G phases, since they are related to each other by the Bonnet
transformation), leading to an enhanced stability of these phases, due to a lower frustration.

The genus, g, of a surface is topologically related to its connectivity. The periodic minimal
surfaces D, P and G all have a genus of 3 for each topological unit cell [75]. The Euler–Poincaré
characteristic, χ , is related to the genus of a surface, g, via χ = (2−2g), and hence has a value
of χIPMS = −4 for these three minimal surfaces. The Gauss–Bonnet theorem states that the
integrated Gaussian curvature over the area SIPMS of the minimal surface unit cell is directly
related to the Euler–Poincaré characteristic via

∫
K dS = 2πχIPMS, and thus the average of K is

given by 〈K 〉 = 2πχIPMS/SIPMS. It has been shown that the quantity 〈K 2〉/〈K 〉2 = 1.2187 for
all three minimal surfaces [57]. The dimensionless surface area σIPMS per unit cell, of volume
VIPMS, is given by σIPMS = SIPMS/V 2/3

IPMS, and has values 2.4177, 2.3451 and 2.4537 for D, P
and G, respectively. This shows that the G surface is the most compact, and the P surface is the
least compact, for a given value of surface area S per unit cell.

However, for the conventional crystallographic unit cells of the cubic phases Pn3m, Im3m
and Ia3d , based respectively on the D, P and G minimal surfaces, the values of g, χ and σ

are different. The reason for this is that, although for the Im3m cubic phase, the P minimal
surface and the Im3m cubic phase unit cells are the same, this is not the case for the other two
cubic phases. The Pn3m cubic phase unit cell has half the volume of the D-surface unit cell,
and the Ia3d cubic phase has twice the volume of the G surface unit cell. If the underlying
minimal surfaces of these cubic phases are related by the Bonnet transformation, which gives a
one-to-one mapping of all surface patches on the minimal surfaces, then the cubic phase lattice
parameters, given by a = V 1/3 = (S/σ )1/2, should have a fixed relationship to each other, as
shown in the last column of table 4.

Another noteworthy difference between these phases is their porosity, which is a gauge
of the number of water channels that split off each junction. The gyroid phase is the least
porous, with three vertices, while the double-diamond and primitive have four and six vertices,
respectively. Theoretical predictions of the observed swelling behaviour of the three QII

phases [72], which depend on the geometric characteristics given in table 4, have been found
to agree closely with experimental results, as can be seen in figure 9.

For co-existing bicontinuous cubic phases, the unit cell dimensions are predicted to satisfy
the Bonnet ratios given in table 4 (a/aPn3m), and this has been observed experimentally [76].
Bonnet ratios have also been noted during transitions between inverse bicontinuous cubic
phases [15].
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Figure 9. Theoretical fits to the observed swelling of the lattice parameters of the three cubic phases
Ia3d, Pn3m and Im3m of the 2:1 lauric acid/dilauroylphosphatidylcholine system for a parallel
surface model. From [72].

The Helfrich ansatz was developed using an initial assumption that the lipid bilayer could
be modelled as an infinitely thin sheet. An incompatibility occurs when considering the inverse
bicontinuous cubic phases, where the ‘thin sheet’ lies over the minimal surface. By definition,
the mean curvature, H , for a minimal surface is zero and, remembering that for symmetric
bilayers the spontaneous mean curvature, H0, is also zero, the Helfrich ansatz can be simplified
to gc = κb

GK , i.e. the curvature elastic energy is proportional to the Gaussian curvature
(remembering that we are considering the curvature elasticity of the bilayer, hence κb

G). Since
the Gaussian curvature K is dependent on the lattice dimensions, the curvature elastic energy
can be reduced by simply decreasing the lattice size. Therefore, minimization of the curvature
elastic energy would try to make the lattice parameter indefinitely small. Obviously, this is
not realized in reality, which implies that the Helfrich ansatz breaks down when the radii of
curvature are of a similar magnitude to the thickness of the lipids. Such considerations have led
to an extension of the Helfrich equation by Ljunggren and Eriksson [45], discussed briefly in
section 2. Physical effects, such as transverse interactions, have also been proposed to stabilize
the inverse bicontinuous cubic phases at a preferred lattice parameter. For uncharged lipids,
transverse interactions such as hydration repulsion are significant only for low water volume
fractions, but may dominate for charged lipids, since electrostatic repulsions act over long range
and therefore high water volume fractions.

2.6. Constant mean curvature versus parallel interfaces

The three QII phases can be depicted as bilayers draped over triply periodic minimal surfaces.
It has been suggested [77] that the two monolayers could either form parallel surfaces (to
the underlying minimal surface) or constant mean curvature (CMC) surfaces, or possibly an
intermediate situation between the two extremes. A parallel surface can be defined when
the extension of a normal from any point on the parallel surface to the minimal surface is
always equidistant. This does not hold true for constant mean curvature surfaces, for which,
by inference, the mean curvature is equal over the entire pivotal surface. In comparison, the
pivotal surface of the HII phase lies on both the CMC and the parallel surface simultaneously.
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Most models developed to investigate the QII phases are based on the parallel surface model,
which is a reasonable assumption for very swollen phases. However, the contribution from the
CMC surface should not be overlooked. The curvature elasticity of the three bicontinuous cubic
phases has been modelled for both the CMC and the parallel interfaces [12]. Templer et al found
that there was an energetic degeneracy for the parallel interface model, which would lead to all
three of the bicontinuous cubic phases existing together, a condition that has not been found
experimentally. The model for the pivotal surface having a constant mean curvature was found
to break the degeneracy, where the sequence for an increasing water volume fraction was given
by G → D → P, which is the same sequence observed both experimentally for 2LA/DLPC
(figure 8) and also predicted by Schwarz and Gompper [71].

3. Packing frustration

The total free energy of a lipid–water system consists of three factors: the curvature elasticity;
an energetic term representing various interaction forces; and also an energy relating to the
packing of the hydrocarbon chains, generally known as the packing frustration. It has been
recognized in the last few years that the packing frustration inherent in the curved inverse
lipid phases may have a larger energetic contribution than previously thought, and preliminary
experiments have been undertaken to characterize its effect. Contiguously, theoretical models
have been developed, initially by Anderson et al [77, 78], and extended by Templer et al
[11, 12].

A simple concept, frequently used in the field of inorganic chemistry to rationalize why
some structures, e.g. cubic close-packing (ccp), are adopted by certain elements, is that of the
‘packing fraction’ of a system, which calculates the volume occupied by the spherical elements,
where the remainder is empty space. This idea can be extended to the curved inverse phases
formed by the packing of aggregates of amphiphilic molecules, and some packing fractions
have been estimated [79]. Treating the phases as close packings of idealized inverse circular
cylinders or inverse spheres allows the fraction of potential ‘void’ volume to be estimated.
The void volume has to be uniformly filled, either by some of the hydrocarbon chains of the
amphiphiles deviating from their preferred conformational states in order to reach into the
voids, or by partitioning of added non-polar molecules such as alkanes into the void regions.
The packing fraction for the inverse hexagonal phase is π/

√
12 ≈ 0.91 (9% void volume),

whereas for the Fd3m inverse micellar cubic phase the packing fraction is 0.71 (29% void
volume), corresponding to a much higher degree of packing frustration. However, this simple
approach does not give the whole answer, since a simple face-centred cubic (fcc) packing of
identical spheres would have a packing fraction of 0.74, i.e. would apparently be slightly less
frustrated than the Fd3m phase, and yet such simple fcc inverse cubic phases are never seen,
whereas the Fd3m phase is now known to be quite common.

3.1. Modelling the packing frustration

The inverse hexagonal phase has a quite high degree of packing frustration, caused by the
geometric packing of circular cylinders not being able to fill space completely. This results in
‘voids’, as shown in figure 10.

The lipid hydrocarbon chains must stretch or compress away from their preferred
conformation to compensate and fill the hydrophobic cavities, giving an energy penalty. The
requirement that, for inversely curved phases, the hydrocarbon chains have to deform leads
to the conclusion that there must be a swelling limit for each phase. The argument follows
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Figure 10. The packing frustration within the HII phase, where the hydrocarbon chains must stretch
or compress to fill the void regions.

that, for greater lattice parameters, the voids must also inherently be larger, and therefore the
chains must extend further to avoid a vacuum being created. At some large lattice parameter,
the chains will be forced to extend to their limit, as given by their all-trans configuration. No
further lengthening is physically possible and, since empty space must be filled, the lipid system
must have reached its swelling limit, and will be forced to adopt a different phase.

The models developed to evaluate the packing frustration in a lipid system all estimate
the energy constrained in the variation of the hydrocarbon chain extension from the relaxed
state, lr, for each amphiphile. The chains have been assumed to act as harmonic springs, so the
energy tied-up in the packing frustration can be expressed simply as a function of the stretching
rigidity of the chains, k, and the monolayer width at some point on the interface, l:

gP = k (l − lr)
2 . (9)

This crude model has been extended to construct expressions for the packing frustration of the
inverse hexagonal phase as well as the three bicontinuous cubic phases. The HII phase was
found to have a much higher packing cost than any of the three bicontinuous cubics, but a
lower curvature elastic energy [12, 77]. These computations may also serve to explain some
observations that have been widely noted, but not definitively recorded and rationalized. One
such rule of thumb is that QII phases tend to be found for diacyl or dialkyl phospholipids that
have chain lengths of C14 or shorter. The reasoning behind this is that longer hydrocarbon
chains can relieve packing frustration, which would encourage the formation of the HII phase,
whereas the shorter chain lengths are unable to extend easily to fill the voids, and so the
inverse bicontinuous cubic phases, with lower packing frustration, dominate. For example,
the C14 ether-linked ditetradecylphosphatidylethanolamine (DTPE)/water system exhibits a
direct Lα–HII transition, whereas the corresponding C12 (DDPE)/water system has extensive
regions of cubic phase existence [5]. Pressure has been shown to be able to induce QII phases
for the C14 (DTPE)/water system [64], where an increase in pressure forces the hydrophobic
chains to pack closer together, which inhibits the filling of the void regions, and induces a
phase change first into a bicontinuous cubic structure, before the HII phase appears at higher
temperature.
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3.2. Experimental results showing the effect of packing frustration

The addition of an alkane to a lipid/water system in order to relieve packing stress was a tool
used by Rand [54] and others to be able to examine the curvature elasticity independently.
Equally, however, the packing frustration inherent for a system can also be examined by the
amount of hydrophobic moiety needed to relieve it. A detailed study of the effect of the
progressive addition of an alkane to the monoacylglyceride 1-monoolein by Khoo et al [80]
has shown that, under certain conditions, the system is able to go through a series of phase
changes, from QII → HII → Fd3m → L2. The relief of packing frustration by the alkane was
allowing the formation of phases with increasingly inverse interfacial curvature.

Interestingly, although the Fd3m phase has so far not been observed for pure
phospholipid/water systems, there have been examples of its existence in the phase diagrams of
purely binary glycolipid/water mixtures [81]. Again, longer chain lengths favour the phase with
a higher packing frustration. Somewhat speculative arguments have been put forward to explain
why glycolipids appear to be able to adopt phases that are too frustrated for phospholipid
systems. The adoption of the Fd3m phase by a binary amphiphile/water system is a peculiar
phenomenon. The structure of the phase was shown earlier to be very distinctive, with each
unit cell consisting of eight large inverse micelles and sixteen smaller inverse micelles, packed
in a regular arrangement. Assuming that the packing frustration is relieved to some degree
either by long chain lengths or the addition of a hydrophobic molecule, the desire to relieve
curvature will eventually drive the system to form spherical micelles. Curiously, the Fd3m
phase has two different sizes of inverse micelle, which will lead to intrinsic curvature issues.
One would therefore expect a structure such as the face-centred cubic (fcc) structure to be
adopted preferentially, since it has a very similar packing fraction to that of the Fd3m phase.
However, the shapes of the voids also need to be considered, as well as the packing fraction.
The empty spaces are spread relatively evenly throughout the unit cell of an Fd3m phase,
which implies that, although a high percentage of the chains need to depart away from their
preferred conformation, the variation in chain extension is quite low. In contrast, the empty
spaces in the fcc lattice are fewer but deeper, i.e. the chains in contact with the voids must,
on average, have a longer chain length than those for the Fd3m phase. Consideration of the
energetics relating to the variance in chain extension of these two phases leads to the conclusion
that the Fd3m phase is favoured.

4. Summary

In this paper we have discussed the inverse phases commonly adopted by lipids found
in biological membranes, where these range from the well-characterized phospholipids to
glycolipids and monoglycerides. The inverse phases generally recognized and focused on here
are the HII, QII and Fd3m phases, although we note in passing that there seems to be no
reason why inverse curved ‘liquid-ordered’ phases should not occur in lipids with a tendency for
inverse curvature, upon addition of sterols. A liquid-ordered inverse bicontinuous cubic phase
will be quite difficult to distinguish from its more usual fluid version, since the wide-angle x-ray
pattern, and presumably the NMR spectra, will be very similar. Nevertheless, we expect that
such phases will be discovered in the near future. We have given an overview of the energetics
that determine the phase behaviour of lipid/water systems and our current understanding of the
competition between the curvature elasticity and packing frustration, focusing on the inverse
bicontinuous cubic phases in section 2. A good appreciation of the relationship between
cell membrane curvature and many biological processes, including intracellular trafficking,
is becoming increasingly important, and an insight into the driving forces behind membrane
curvature is vital.
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